[image:]

Data Engineering Guide

Delta Live Tables Development Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	2.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

	Department
	Mastech Digital - Data & Analytics

Table of Contents
[Executive Summary](#1-executive-summary)
[DLT Architecture Overview](#2-dlt-architecture-overview)
[Pipeline Development](#3-pipeline-development)
[Data Quality with Expectations](#4-data-quality-with-expectations)
[Change Data Capture (CDC)](#5-change-data-capture-cdc)
[Pipeline Configuration](#6-pipeline-configuration)
[Advanced Patterns](#7-advanced-patterns)
[Monitoring and Observability](#8-monitoring-and-observability)
[Testing DLT Pipelines](#9-testing-dlt-pipelines)
[Performance Optimization](#10-performance-optimization)
[Security and Governance](#11-security-and-governance)
[Migration Guide](#12-migration-guide)
[Troubleshooting](#13-troubleshooting)
[Best Practices](#14-best-practices)
1. Executive Summary
1.1 Purpose and Scope
Delta Live Tables (DLT) represents Databricks' next-generation approach to building ETL pipelines. This guide provides comprehensive coverage of DLT concepts, development patterns, and production best practices, enabling data engineers to build reliable, maintainable, and scalable data pipelines with built-in data quality guarantees.
1.2 What is Delta Live Tables?
Delta Live Tables is a declarative ETL framework that fundamentally changes how data pipelines are built and maintained. Instead of writing imperative code that specifies how to process data step-by-step, DLT allows engineers to declare what the data should look like, and the framework handles the complexity of execution, dependencies, and error handling.
Key Differentiators:
	Aspect
	Traditional ETL
	Delta Live Tables

	Programming Model
	Imperative (how to do it)
	Declarative (what to achieve)

	Dependency Management
	Manual orchestration
	Automatic resolution

	Data Quality
	Custom code required
	Built-in expectations

	Error Handling
	Manual implementation
	Automatic retry/recovery

	Incremental Processing
	Complex checkpoint logic
	Automatic state management

	Lineage Tracking
	External tools needed
	Native integration

1.3 Why Choose Delta Live Tables?
DLT addresses the most common challenges in data pipeline development:
For Data Engineers:
Eliminates boilerplate code for streaming, checkpointing, and state management
Provides declarative data quality enforcement without custom validation logic
Automatic dependency resolution removes manual orchestration complexity
Built-in error recovery reduces on-call burden
For Data Architects:
Enforces consistent patterns across teams and pipelines
Native integration with Unity Catalog for governance
Complete lineage tracking for compliance requirements
Standardized monitoring and observability
For Operations:
Automatic scaling reduces infrastructure management
Built-in monitoring eliminates custom alerting setup
Self-healing capabilities reduce incident response time
Consistent deployment model simplifies CI/CD
1.4 DLT Editions and Capabilities
Databricks offers DLT in different editions with varying capabilities:
	Capability
	Core
	Pro
	Advanced

	Streaming Tables
	Yes
	Yes
	Yes

	Materialized Views
	Yes
	Yes
	Yes

	Expectations (Quality)
	Basic
	Full
	Full

	Change Data Capture
	No
	Yes
	Yes

	Enhanced Autoscaling
	No
	No
	Yes

	Row-level Expectations
	No
	No
	Yes

1.5 Target Audience
This guide serves:
Data Engineers: Building and maintaining DLT pipelines
Data Architects: Designing pipeline architectures and establishing standards
Analytics Engineers: Creating data models using DLT
Platform Engineers: Managing DLT infrastructure and governance
2. DLT Architecture Overview
2.1 Understanding the DLT Execution Model
Delta Live Tables operates on a fundamentally different execution model than traditional Spark jobs. Understanding this architecture is essential for effective pipeline design and troubleshooting.
When you define a DLT pipeline, you're creating a declarative specification of your data transformations. The DLT engine then:
Parses Definitions: Reads all table and view definitions from your notebooks
Builds Dependency Graph: Automatically determines the order of execution based on data dependencies
Plans Execution: Optimizes the execution plan for incremental processing
Manages State: Handles checkpointing, watermarks, and recovery automatically
Enforces Quality: Applies data quality expectations at write time
Tracks Lineage: Records complete data lineage for governance
Architecture Diagram
┌───┐
│ DELTA LIVE TABLES ARCHITECTURE │
├───┤
│ │
│ PIPELINE DEFINITION (Python/SQL) │
│ ┌───┐ │
│ │ @dlt.table @dlt.view @dlt.expect │ │
│ │ Materialized Virtual View Data Quality │ │
│ │ Delta Table (not persisted) Expectations │ │
│ └───┘ │
│ │ │
│ ▼ │
│ DLT ENGINE │
│ ┌───┐ │
│ │ • Dependency Resolution • Incremental Processing │ │
│ │ • Auto-scaling Compute • Data Quality Enforcement │ │
│ │ • Change Data Capture • Schema Evolution │ │
│ │ • Error Handling • Lineage Tracking │ │
│ └───┘ │
│ │ │
│ ▼ │
│ OUTPUT │
│ ┌───┐ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Bronze │ │ Silver │ │ Gold │ │ Event │ │ │
│ │ │ Tables │ │ Tables │ │ Tables │ │ Logs │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ └───┘ │
│ │
└───┘
2.2 Core Concepts
Understanding DLT's core concepts is fundamental to effective pipeline development:
Tables vs Views
DLT provides two primary abstractions for defining data transformations:
	Concept
	Decorator
	Persistence
	Queryable
	Use Case

	Streaming Table
	`@dlt.table`
	Yes (Delta)
	Yes
	Append-only streaming data

	Materialized View
	`@dlt.table`
	Yes (Delta)
	Yes
	Batch or streaming with updates/deletes

	View
	`@dlt.view`
	No
	Pipeline only
	Intermediate transformations

Streaming Tables are optimized for append-only workloads where data arrives continuously. They maintain streaming state and process data incrementally.
Materialized Views support full CRUD operations and are recomputed based on their upstream dependencies. They're ideal for aggregations that need to reflect updates in source data.
Views are virtual transformations that exist only during pipeline execution. They're perfect for intermediate steps that don't need persistence, reducing storage costs and improving performance.
Streaming vs Batch Semantics
DLT supports both streaming and batch processing models:
	Method
	Semantics
	Processing
	State

	`dlt.read_stream()`
	Streaming
	Incremental
	Maintained

	`dlt.read()`
	Batch
	Full recompute
	None

	`spark.readStream`
	Streaming (source)
	Incremental
	Maintained

	`spark.read`
	Batch (source)
	Full read
	None

Best Practice: Use streaming semantics (read_stream) whenever possible to benefit from incremental processing and automatic state management.
2.3 Pipeline Execution Modes
DLT pipelines can operate in different modes based on your requirements:
	Mode
	Description
	Use Case

	Triggered
	Runs once, processes available data, stops
	Scheduled batch jobs

	Continuous
	Runs indefinitely, processes data as it arrives
	Real-time applications

	Development
	Relaxed validation, smaller compute
	Development and testing

	Production
	Full validation, optimized compute
	Production workloads

2.4 Target Schema and Catalog
DLT pipelines write to a target schema within a Unity Catalog catalog. Understanding the naming and organization is important:
Target Configuration:
 Catalog: production_catalog
 Schema: sales_pipeline

Result:
 production_catalog.sales_pipeline.bronze_orders
 production_catalog.sales_pipeline.silver_orders
 production_catalog.sales_pipeline.gold_daily_sales
3. Pipeline Development
3.1 Python Pipeline Development
Python is the most flexible option for DLT development, offering full programmatic control over transformations while maintaining the declarative benefits of DLT.
Pipeline Structure Best Practices
Organize your DLT notebooks following the medallion architecture with clear separation between layers:
Imports and Configuration: Define all imports and read configuration parameters
Bronze Layer: Raw data ingestion with minimal transformation
Silver Layer: Cleansed, validated, and conformed data
Gold Layer: Business-level aggregations and dimensional models
Bronze Layer Implementation
The Bronze layer captures raw data exactly as received from source systems. The primary goals are:
Complete Capture: Ingest all data without loss
Metadata Enrichment: Add ingestion timestamps and source file information
Schema Flexibility: Handle schema evolution gracefully
import dlt
from pyspark.sql import functions as F

==
BRONZE LAYER - Raw Data Ingestion
==

@dlt.table(
 name="bronze_orders",
 comment="Raw orders ingested from source system",
 table_properties={
 "quality": "bronze",
 "pipelines.autoOptimize.managed": "true"
 }
)
def bronze_orders():
 """
 Ingest raw order data from landing zone using Auto Loader.

 Auto Loader provides:
 - Automatic file discovery and tracking
 - Schema inference and evolution
 - Exactly-once processing guarantees
 - Scalable to millions of files
 """
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/checkpoints/bronze_orders/schema")
 .option("cloudFiles.inferColumnTypes", "true")
 .load("/mnt/landing/orders/")
 .withColumn("_ingestion_timestamp", F.current_timestamp())
 .withColumn("_source_file", F.input_file_name())
)

@dlt.table(
 name="bronze_customers",
 comment="Raw customer data from CRM system"
)
def bronze_customers():
 """
 Ingest customer data with schema hints for better type inference.

 Schema hints guide Auto Loader's inference when source files
 don't contain enough information to determine types accurately.
 """
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "csv")
 .option("cloudFiles.schemaHints", "customer_id STRING, created_date DATE")
 .option("header", "true")
 .load("/mnt/landing/customers/")
 .withColumn("_ingestion_timestamp", F.current_timestamp())
)
Silver Layer Implementation
The Silver layer transforms raw data into a clean, validated, and standardized format. This is where data quality enforcement happens:
Data Validation: Apply expectations to enforce quality rules
Type Casting: Convert strings to appropriate data types
Standardization: Normalize formats (dates, cases, whitespace)
Deduplication: Remove duplicate records
==
SILVER LAYER - Cleansed and Conformed Data
==

@dlt.table(
 name="silver_orders",
 comment="Cleansed and validated orders"
)
@dlt.expect("valid_order_id", "order_id IS NOT NULL")
@dlt.expect("valid_amount", "amount > 0")
@dlt.expect_or_drop("valid_status", "status IN ('PENDING', 'SHIPPED', 'DELIVERED', 'CANCELLED')")
def silver_orders():
 """
 Clean and validate order data.

 This transformation:
 1. Casts columns to appropriate types
 2. Standardizes status values to uppercase
 3. Removes duplicates based on order_id
 4. Adds processing timestamps for lineage

 Data Quality Rules:
 - order_id must not be null (logged if violated)
 - amount must be positive (logged if violated)
 - status must be valid (dropped if violated)
 """
 return (
 dlt.read_stream("bronze_orders")
 .select(
 F.col("order_id").cast("string"),
 F.col("customer_id").cast("string"),
 F.to_date("order_date", "yyyy-MM-dd").alias("order_date"),
 F.col("amount").cast("decimal(18,2)"),
 F.upper(F.trim(F.col("status"))).alias("status"),
 F.col("_ingestion_timestamp").alias("bronze_timestamp"),
 F.current_timestamp().alias("silver_timestamp")
)
 .dropDuplicates(["order_id"])
)

@dlt.table(
 name="silver_customers",
 comment="Cleansed customer master data"
)
@dlt.expect_all({
 "valid_customer_id": "customer_id IS NOT NULL",
 "valid_email": "email RLIKE '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'"
})
def silver_customers():
 """
 Clean and standardize customer data.

 Transformations applied:
 - Names converted to title case
 - Email addresses lowercased
 - Whitespace trimmed from all string fields
 """
 return (
 dlt.read_stream("bronze_customers")
 .select(
 F.col("customer_id"),
 F.initcap(F.trim(F.col("first_name"))).alias("first_name"),
 F.initcap(F.trim(F.col("last_name"))).alias("last_name"),
 F.lower(F.trim(F.col("email"))).alias("email"),
 F.col("created_date"),
 F.current_timestamp().alias("updated_timestamp")
)
)
Gold Layer Implementation
The Gold layer creates business-ready datasets optimized for consumption. These are typically aggregations, dimensional models, or feature tables:
==
GOLD LAYER - Business Aggregates
==

@dlt.table(
 name="gold_customer_orders",
 comment="Customer order summary - refreshed incrementally"
)
def gold_customer_orders():
 """
 Create customer order summary by joining orders and customers.

 This materialized view:
 - Joins customer and order data
 - Calculates customer lifetime metrics
 - Assigns customer segments based on spending

 Business Rules:
 - PLATINUM: >= $10,000 total spent
 - GOLD: >= $5,000 total spent
 - SILVER: >= $1,000 total spent
 - BRONZE: < $1,000 total spent
 """
 orders = dlt.read("silver_orders")
 customers = dlt.read("silver_customers")

 return (
 orders
 .join(customers, "customer_id", "left")
 .groupBy(
 "customer_id",
 "first_name",
 "last_name",
 "email"
)
 .agg(
 F.count("order_id").alias("total_orders"),
 F.sum("amount").alias("total_spent"),
 F.avg("amount").alias("avg_order_value"),
 F.max("order_date").alias("last_order_date"),
 F.min("order_date").alias("first_order_date")
)
 .withColumn(
 "customer_segment",
 F.when(F.col("total_spent") >= 10000, "PLATINUM")
 .when(F.col("total_spent") >= 5000, "GOLD")
 .when(F.col("total_spent") >= 1000, "SILVER")
 .otherwise("BRONZE")
)
)

@dlt.table(
 name="gold_daily_sales",
 comment="Daily sales aggregates"
)
def gold_daily_sales():
 """
 Aggregate daily sales metrics.

 Excludes cancelled orders from revenue calculations
 to provide accurate business metrics.
 """
 return (
 dlt.read("silver_orders")
 .filter(F.col("status") != "CANCELLED")
 .groupBy("order_date")
 .agg(
 F.count("order_id").alias("order_count"),
 F.sum("amount").alias("total_revenue"),
 F.avg("amount").alias("avg_order_value"),
 F.countDistinct("customer_id").alias("unique_customers")
)
)
3.2 SQL Pipeline Development
SQL provides a more accessible option for teams familiar with SQL syntax. DLT SQL supports the same capabilities as Python with a declarative syntax.
SQL Syntax for DLT
SQL-based DLT pipelines use special DDL statements that define tables and their data quality constraints:
-- ==
-- BRONZE LAYER
-- ==

-- Streaming table ingests data continuously from cloud storage
-- cloud_files() is the SQL equivalent of Auto Loader
CREATE OR REFRESH STREAMING TABLE bronze_events
COMMENT "Raw events from clickstream"
TBLPROPERTIES ("quality" = "bronze")
AS SELECT
 *,
 current_timestamp() as _ingestion_timestamp,
 input_file_name() as _source_file
FROM cloud_files(
 "/mnt/landing/events/",
 "json",
 map("cloudFiles.inferColumnTypes", "true")
);

-- ==
-- SILVER LAYER
-- ==

-- Constraints define data quality expectations inline
-- ON VIOLATION DROP ROW removes records that fail validation
CREATE OR REFRESH STREAMING TABLE silver_events (
 CONSTRAINT valid_event_id EXPECT (event_id IS NOT NULL),
 CONSTRAINT valid_user_id EXPECT (user_id IS NOT NULL),
 CONSTRAINT valid_timestamp EXPECT (event_timestamp IS NOT NULL) ON VIOLATION DROP ROW
)
COMMENT "Cleansed events with data quality enforcement"
AS SELECT
 CAST(event_id AS STRING) as event_id,
 CAST(user_id AS STRING) as user_id,
 CAST(event_type AS STRING) as event_type,
 to_timestamp(event_timestamp) as event_timestamp,
 CAST(properties AS MAP<STRING, STRING>) as properties,
 _ingestion_timestamp,
 current_timestamp() as _silver_timestamp
FROM STREAM(LIVE.bronze_events);

-- ==
-- GOLD LAYER
-- ==

-- Materialized views are ideal for aggregations that need to stay current
-- They are recomputed when upstream data changes
CREATE OR REFRESH MATERIALIZED VIEW gold_user_activity
COMMENT "User activity summary"
AS SELECT
 user_id,
 COUNT(*) as total_events,
 COUNT(DISTINCT event_type) as unique_event_types,
 MIN(event_timestamp) as first_activity,
 MAX(event_timestamp) as last_activity,
 DATEDIFF(MAX(event_timestamp), MIN(event_timestamp)) as active_days,
 collect_set(event_type) as event_types
FROM LIVE.silver_events
GROUP BY user_id;

CREATE OR REFRESH MATERIALIZED VIEW gold_hourly_events
COMMENT "Hourly event aggregates"
AS SELECT
 date_trunc('HOUR', event_timestamp) as event_hour,
 event_type,
 COUNT(*) as event_count,
 COUNT(DISTINCT user_id) as unique_users
FROM LIVE.silver_events
GROUP BY 1, 2;
3.3 Choosing Between Python and SQL
	Factor
	Python
	SQL

	Complex Logic
	Better
	Limited

	Team Familiarity
	Requires Python
	Accessible to SQL users

	External Libraries
	Full support
	Not available

	Debugging
	Standard Python tools
	Limited

	Maintenance
	More code
	More concise

	Dynamic Logic
	Full flexibility
	Limited

Recommendation: Use Python for complex pipelines with business logic, custom transformations, or external integrations. Use SQL for simpler pipelines or when the team is SQL-focused.
4. Data Quality with Expectations
4.1 Understanding Expectations
Expectations are DLT's built-in mechanism for enforcing data quality rules. They're evaluated at write time, meaning invalid data is caught before it pollutes downstream tables.
Unlike traditional approaches that require separate validation jobs, expectations are:
Declarative: Define rules, not validation logic
Integrated: Run as part of the pipeline, not separately
Measurable: Metrics automatically captured in event logs
Actionable: Configure different responses to violations
4.2 Expectation Types and Behaviors
DLT provides several expectation decorators with different behaviors when rules are violated:
	Decorator
	On Violation
	Records
	Pipeline
	Use Case

	`@dlt.expect`
	Log warning
	Keep all
	Continues
	Non-critical validation

	`@dlt.expect_or_drop`
	Log & drop
	Drop bad
	Continues
	Quality filtering

	`@dlt.expect_or_fail`
	Log & fail
	Keep all
	Stops
	Critical validation

	`@dlt.expect_all`
	Log warnings
	Keep all
	Continues
	Multiple non-critical

	`@dlt.expect_all_or_drop`
	Log & drop
	Drop bad
	Continues
	Multiple quality filters

	`@dlt.expect_all_or_fail`
	Log & fail
	Keep all
	Stops
	Multiple critical

4.3 Expectation Syntax and Examples
import dlt

EXPECT: Log failures but keep all rows
Use for monitoring data quality without blocking data flow
@dlt.expect("valid_id", "id IS NOT NULL")

EXPECT_OR_DROP: Drop rows that fail validation
Use for filtering out invalid records
@dlt.expect_or_drop("positive_amount", "amount > 0")

EXPECT_OR_FAIL: Stop pipeline on violation
Use for critical business rules that must never be violated
@dlt.expect_or_fail("critical_field", "critical_field IS NOT NULL")

EXPECT_ALL: Multiple expectations in a single decorator
Cleaner syntax when you have many rules
@dlt.expect_all({
 "valid_id": "id IS NOT NULL",
 "valid_date": "date IS NOT NULL",
 "valid_amount": "amount > 0"
})

EXPECT_ALL_OR_DROP: Drop on any failure
Use when all rules must pass for a record to be valid
@dlt.expect_all_or_drop({
 "valid_id": "id IS NOT NULL",
 "positive_amount": "amount > 0"
})

EXPECT_ALL_OR_FAIL: Fail on any violation
Use for critical multi-rule validation
@dlt.expect_all_or_fail({
 "critical_id": "id IS NOT NULL",
 "critical_timestamp": "timestamp IS NOT NULL"
})
4.4 Advanced Expectation Patterns
Real-world data quality requires comprehensive validation rules covering multiple categories:
@dlt.table(name="validated_transactions")
@dlt.expect_all({
 # Null checks - Ensure required fields are present
 "valid_transaction_id": "transaction_id IS NOT NULL",

 # Format validation - Verify data matches expected patterns
 "valid_email_format": "email RLIKE '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$'",

 # Range checks - Ensure values fall within acceptable bounds
 "valid_amount_range": "amount BETWEEN 0 AND 1000000",

 # Temporal validation - Verify dates are logical
 "valid_date": "transaction_date <= current_date()",

 # Referential validation - Check against known valid values
 "valid_status": "status IN ('PENDING', 'COMPLETED', 'FAILED', 'REFUNDED')",

 # Cross-column validation - Ensure column relationships are valid
 "valid_dates": "end_date >= start_date",

 # Business rule validation - Enforce domain-specific rules
 "amount_not_negative": "amount >= 0"
})
def validated_transactions():
 """
 Apply comprehensive data quality rules to transaction data.

 All expectations are logged; records are retained even if
 they fail validation. Use monitoring to track quality trends.
 """
 return dlt.read_stream("bronze_transactions")
4.5 Quarantine Pattern
For scenarios where you need to capture and analyze invalid records separately, implement the quarantine pattern:
Main table - clean data only
@dlt.table(name="clean_orders")
@dlt.expect_or_drop("valid_order", "order_id IS NOT NULL AND amount > 0")
def clean_orders():
 """
 Clean orders table containing only valid records.
 Invalid records are captured in the quarantine table.
 """
 return dlt.read_stream("bronze_orders")

Quarantine table - capture bad records for analysis
@dlt.table(name="quarantine_orders")
def quarantine_orders():
 """
 Capture records that failed quality checks.

 This table allows data engineers to:
 - Analyze patterns in data quality issues
 - Identify source system problems
 - Manually remediate fixable records
 - Report on data quality metrics
 """
 return (
 dlt.read_stream("bronze_orders")
 .filter(
 (F.col("order_id").isNull()) |
 (F.col("amount") <= 0)
)
 .withColumn("quarantine_reason",
 F.when(F.col("order_id").isNull(), "missing_order_id")
 .when(F.col("amount") <= 0, "invalid_amount")
 .otherwise("unknown")
)
 .withColumn("quarantine_timestamp", F.current_timestamp())
)
4.6 Expectation Best Practices
	Layer
	Expectation Strategy
	Rationale

	Bronze
	Minimal (null checks only)
	Preserve raw data for debugging

	Silver
	Comprehensive validation
	Enforce quality before business use

	Gold
	Business rule validation
	Ensure business logic integrity

5. Change Data Capture (CDC)
5.1 Understanding CDC in DLT
Change Data Capture (CDC) enables processing of insert, update, and delete operations from source systems. DLT's APPLY CHANGES API simplifies CDC processing by automatically handling:
Ordering: Ensures changes are applied in the correct sequence
Deduplication: Handles duplicate events from the source
Late-arriving data: Manages out-of-order events
Delete handling: Properly processes delete operations
History tracking: Supports SCD Type 1 and Type 2
5.2 CDC Source Patterns
CDC data typically arrives in one of these formats:
	Source
	Format
	Typical Fields

	Debezium
	JSON
	op, before, after, ts_ms

	AWS DMS
	JSON/Parquet
	Op, data, metadata

	Oracle GoldenGate
	Trail files
	op_type, before, after

	Custom CDC
	Various
	operation, payload, timestamp

5.3 APPLY CHANGES Implementation
The apply_changes function is the core mechanism for CDC processing in DLT:
import dlt
from pyspark.sql import functions as F

Source CDC stream - ingest raw CDC events
@dlt.table(name="bronze_customers_cdc")
def bronze_customers_cdc():
 """
 Ingest CDC events from source system.

 Expected schema includes:
 - customer_id: Business key
 - operation: INSERT, UPDATE, DELETE, or TRUNCATE
 - _commit_timestamp: When the change occurred
 - All customer fields
 """
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .load("/mnt/landing/customers_cdc/")
)

Create the target streaming table for CDC
dlt.create_streaming_table(
 name="silver_customers_cdc",
 comment="Customer master with CDC applied"
)

Apply CDC changes to maintain current state (SCD Type 1)
dlt.apply_changes(
 target="silver_customers_cdc",
 source="bronze_customers_cdc",
 keys=["customer_id"], # Business key(s) for matching
 sequence_by=F.col("_commit_timestamp"), # Order changes correctly
 apply_as_deletes=F.expr("operation = 'DELETE'"),
 apply_as_truncates=F.expr("operation = 'TRUNCATE'"),
 except_column_list=["operation", "_commit_timestamp"], # Exclude CDC metadata
 stored_as_scd_type=1 # Type 1: Overwrite (no history)
)
5.4 SCD Type 2 (History Tracking)
For scenarios requiring complete history of changes:
Create table for full history tracking
dlt.create_streaming_table(
 name="silver_customers_history",
 comment="Customer master with full history (SCD Type 2)"
)

dlt.apply_changes(
 target="silver_customers_history",
 source="bronze_customers_cdc",
 keys=["customer_id"],
 sequence_by=F.col("_commit_timestamp"),
 apply_as_deletes=F.expr("operation = 'DELETE'"),
 stored_as_scd_type=2, # Type 2: Keep full history
 track_history_column_list=["name", "email", "address", "phone"]
)
SCD Type 2 Output Schema:
	Column
	Description

	`__START_AT`
	When this version became effective

	`__END_AT`
	When this version was superseded (null if current)

5.5 CDC from Kafka
For real-time CDC from Kafka sources:
@dlt.table(name="bronze_kafka_events")
def bronze_kafka_events():
 """
 Read CDC events from Kafka.

 Parses Debezium-format change events and extracts:
 - customer_id from message key
 - operation type from payload
 - current data from 'after' field
 - change timestamp from ts_ms
 """
 return (
 spark.readStream
 .format("kafka")
 .option("kafka.bootstrap.servers", "kafka:9092")
 .option("subscribe", "customers_cdc")
 .option("startingOffsets", "earliest")
 .load()
 .select(
 F.col("key").cast("string").alias("customer_id"),
 F.from_json(
 F.col("value").cast("string"),
 "op STRING, before STRUCT<...>, after STRUCT<...>, ts_ms BIGINT"
).alias("payload"),
 F.col("timestamp").alias("kafka_timestamp")
)
 .select(
 "customer_id",
 F.col("payload.op").alias("operation"),
 F.coalesce(F.col("payload.after"), F.col("payload.before")).alias("data"),
 F.from_unixtime(F.col("payload.ts_ms") / 1000).alias("change_timestamp")
)
)
6. Pipeline Configuration
6.1 Pipeline Settings Overview
DLT pipelines are configured through JSON settings that control compute, storage, and runtime behavior. Understanding these settings is essential for production deployments.
6.2 Complete Pipeline Configuration
{
 "name": "production_etl_pipeline",
 "target": "production_catalog.sales",
 "continuous": false,
 "development": false,
 "photon": true,
 "channel": "CURRENT",
 "edition": "ADVANCED",
 "clusters": [
 {
 "label": "default",
 "autoscale": {
 "min_workers": 2,
 "max_workers": 10,
 "mode": "ENHANCED"
 },
 "spark_conf": {
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.databricks.delta.autoCompact.enabled": "true"
 },
 "custom_tags": {
 "Environment": "Production",
 "CostCenter": "DataEngineering"
 }
 }
],
 "libraries": [
 {
 "notebook": {
 "path": "/Repos/production/pipelines/sales_pipeline"
 }
 }
],
 "configuration": {
 "source_path": "/mnt/landing/sales/",
 "checkpoint_path": "/checkpoints/sales_pipeline/",
 "environment": "production"
 }
}
6.3 Configuration Parameters Explained
	Parameter
	Description
	Recommendation

	`continuous`
	Run indefinitely vs triggered
	`true` for real-time, `false` for batch

	`development`
	Relaxed validation mode
	`false` for production

	`photon`
	Enable Photon acceleration
	`true` for SQL-heavy workloads

	`channel`
	Runtime version
	`CURRENT` for stability

	`edition`
	DLT feature tier
	Based on required features

6.4 Parameterized Pipelines
Use pipeline configuration parameters to create reusable, environment-aware pipelines:
import dlt
from pyspark.sql import functions as F

Access pipeline configuration
These values come from the pipeline's "configuration" block
source_path = spark.conf.get("source_path", "/mnt/landing/default/")
environment = spark.conf.get("environment", "development")

@dlt.table(
 name=f"bronze_orders_{environment}",
 comment=f"Bronze orders for {environment} environment"
)
def bronze_orders():
 """
 Ingest orders from environment-specific source path.
 The path is configured externally, allowing the same
 pipeline code to run in dev, staging, and production.
 """
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .load(source_path)
)

Environment-specific expectations
Production has stricter validation than development
if environment == "production":
 expectations = {
 "valid_id": "id IS NOT NULL",
 "valid_amount": "amount > 0",
 "valid_date": "order_date IS NOT NULL"
 }
else:
 expectations = {
 "valid_id": "id IS NOT NULL" # Relaxed for dev
 }

@dlt.table(name=f"silver_orders_{environment}")
@dlt.expect_all(expectations)
def silver_orders():
 """
 Apply environment-appropriate validation rules.
 """
 return dlt.read_stream(f"bronze_orders_{environment}")
7. Advanced Patterns
7.1 Multi-Source Joins
Joining data from multiple sources requires careful consideration of streaming vs batch semantics:
@dlt.table(name="enriched_orders")
def enriched_orders():
 """
 Enrich streaming orders with batch dimension data.

 Pattern: Stream-static join
 - Orders are streaming (incremental)
 - Customers are batch (full snapshot)

 This pattern is efficient when dimension tables are
 relatively small and don't change frequently.
 """
 orders = dlt.read_stream("silver_orders")
 customers = dlt.read("silver_customers") # Batch read
 products = dlt.read("silver_products") # Batch read

 return (
 orders
 .join(customers, "customer_id", "left")
 .join(products, "product_id", "left")
 .select(
 "order_id",
 "order_date",
 "amount",
 "customer_name",
 "customer_segment",
 "product_name",
 "product_category"
)
)
7.2 Late-Arriving Data Handling
Handle late-arriving data with watermarks:
@dlt.table(name="windowed_aggregates")
def windowed_aggregates():
 """
 Aggregate events with watermark for late data handling.

 Watermark allows events up to 1 hour late to be included
 in aggregations. Events arriving later are dropped.
 """
 return (
 dlt.read_stream("silver_events")
 .withWatermark("event_timestamp", "1 hour")
 .groupBy(
 F.window("event_timestamp", "15 minutes"),
 "event_type"
)
 .agg(
 F.count("*").alias("event_count"),
 F.approx_count_distinct("user_id").alias("unique_users")
)
)
7.3 Conditional Processing
Implement branching logic based on data content:
Process high-value orders separately
@dlt.table(name="high_value_orders")
def high_value_orders():
 """
 Filter and process high-value orders for priority handling.
 """
 return (
 dlt.read_stream("silver_orders")
 .filter(F.col("amount") >= 1000)
 .withColumn("priority", F.lit("HIGH"))
)

@dlt.table(name="standard_orders")
def standard_orders():
 """
 Process standard orders through normal flow.
 """
 return (
 dlt.read_stream("silver_orders")
 .filter(F.col("amount") < 1000)
 .withColumn("priority", F.lit("STANDARD"))
)
8. Monitoring and Observability
8.1 Event Log Overview
Every DLT pipeline maintains an event log that captures detailed execution information. This log is essential for:
Monitoring pipeline health
Debugging failures
Tracking data quality metrics
Auditing processing history
8.2 Event Log Queries
-- Pipeline execution summary
-- Shows recent pipeline runs with row counts and status
SELECT
 timestamp,
 details:flow_progress:status as status,
 details:flow_progress:metrics:num_output_rows as rows_written,
 details:flow_progress:data_quality:expectations as dq_results
FROM event_log(TABLE(production_catalog.sales.silver_orders))
WHERE event_type = 'flow_progress'
ORDER BY timestamp DESC
LIMIT 100;

-- Data quality violations
-- Identify when and where quality issues occur
SELECT
 timestamp,
 details:flow_progress:data_quality:dropped_records as dropped_rows,
 details:flow_progress:data_quality:expectations as expectations
FROM event_log(TABLE(production_catalog.sales.silver_orders))
WHERE event_type = 'flow_progress'
 AND details:flow_progress:data_quality:dropped_records > 0
ORDER BY timestamp DESC;

-- Pipeline failures
-- Debug pipeline failures with error details
SELECT
 timestamp,
 details:error:message as error_message,
 details:error:stack_trace as stack_trace
FROM event_log(TABLE(production_catalog.sales.silver_orders))
WHERE event_type = 'flow_progress'
 AND details:flow_progress:status = 'FAILED'
ORDER BY timestamp DESC;
8.3 Setting Up Alerts
Configure alerts for critical pipeline events:
	Alert Condition
	Query Filter
	Action

	Pipeline failure
	`status = 'FAILED'`
	Page on-call

	High drop rate
	`dropped_records > threshold`
	Notify team

	Processing delay
	`timestamp lag > SLA`
	Warn team

	Unexpected schema
	`schema_drift detected`
	Review required

9. Testing DLT Pipelines
9.1 Testing Strategy
DLT pipelines require a multi-layered testing approach:
	Test Type
	What to Test
	Tools

	Unit Tests
	Individual transformations
	pytest, spark-testing-base

	Integration Tests
	Full pipeline execution
	DLT API, SDK

	Data Quality Tests
	Expectation validation
	DLT expectations

	Performance Tests
	Throughput and latency
	Benchmark jobs

9.2 Unit Testing Transformations
Extract transformation logic into testable functions:
test_transformations.py
import pytest
from pyspark.sql import SparkSession
from pyspark.sql import functions as F

Import transformation functions (not DLT decorators)
from transformations import clean_customer_data, calculate_customer_metrics

@pytest.fixture(scope="session")
def spark():
 """Create SparkSession for testing."""
 return SparkSession.builder.master("local[2]").getOrCreate()

@pytest.fixture
def sample_customers(spark):
 """Create sample customer data for testing."""
 data = [
 ("C001", "john", "doe", "JOHN@EMAIL.COM", 100.0),
 ("C002", "jane", "smith", "jane@email.com", 200.0),
 (None, "test", "user", "test@email.com", 50.0),
]
 return spark.createDataFrame(
 data, ["customer_id", "first_name", "last_name", "email", "total_spent"]
)

class TestCleanCustomerData:
 """Test suite for customer data cleaning transformations."""

 def test_email_lowercase(self, spark, sample_customers):
 """Verify emails are converted to lowercase."""
 result = clean_customer_data(sample_customers)
 emails = [row.email for row in result.collect()]
 assert all(email == email.lower() for email in emails)

 def test_name_formatting(self, spark, sample_customers):
 """Verify names are converted to title case."""
 result = clean_customer_data(sample_customers)
 first_names = [row.first_name for row in result.collect()]
 assert "John" in first_names

 def test_filters_null_ids(self, spark, sample_customers):
 """Verify records with null customer_id are filtered."""
 result = clean_customer_data(sample_customers)
 assert result.filter(F.col("customer_id").isNull()).count() == 0
9.3 Integration Testing
Test complete pipeline execution using the Databricks SDK:
test_pipeline_integration.py
import pytest
from databricks.sdk import WorkspaceClient

class TestPipelineIntegration:
 """Integration tests for DLT pipeline execution."""

 @pytest.fixture(autouse=True)
 def setup(self):
 self.client = WorkspaceClient()
 self.pipeline_id = "test-pipeline-id"

 def test_pipeline_runs_successfully(self):
 """Test that pipeline completes without errors."""
 # Trigger pipeline update
 update = self.client.pipelines.start_update(
 pipeline_id=self.pipeline_id,
 full_refresh=True
)

 # Wait for completion
 result = self.client.pipelines.wait_get_update_succeeded(
 pipeline_id=self.pipeline_id,
 update_id=update.update_id
)

 assert result.state == "COMPLETED"

 def test_output_table_has_data(self, spark):
 """Verify output tables contain expected data."""
 df = spark.table("production_catalog.sales.gold_daily_sales")
 assert df.count() > 0

 def test_data_quality_metrics(self):
 """Verify data quality expectations are met."""
 dq_results = spark.sql("""
 SELECT
 details:flow_progress:data_quality:expectations
 FROM event_log(TABLE(production_catalog.sales.silver_orders))
 WHERE event_type = 'flow_progress'
 ORDER BY timestamp DESC
 LIMIT 1
 """).collect()[0][0]

 # Verify at least 99% of records pass validation
 assert dq_results["passed"] >= 0.99
10. Performance Optimization
10.1 Streaming Performance
Optimize streaming throughput with these techniques:
1. Use streaming for incremental processing
@dlt.table(name="silver_events")
def silver_events():
 """Streaming provides automatic incremental processing."""
 return dlt.read_stream("bronze_events") # Streaming

2. Use views for intermediate transformations
Views avoid materializing intermediate results
@dlt.view(name="filtered_events")
def filtered_events():
 """View is not persisted, reducing I/O."""
 return dlt.read_stream("bronze_events").filter(F.col("type") == "click")

@dlt.table(name="silver_click_events")
def silver_click_events():
 """Only this table is persisted."""
 return dlt.read_stream("filtered_events")

3. Partition large tables for efficient querying
@dlt.table(
 name="large_events",
 partition_cols=["event_date"]
)
def large_events():
 """Partitioning improves query performance for date-filtered queries."""
 return dlt.read_stream("bronze_events")
10.2 Compute Optimization
	Setting
	Impact
	Recommendation

	Photon
	2-8x faster SQL
	Enable for SQL-heavy workloads

	Enhanced Autoscaling
	Better resource utilization
	Use for variable workloads

	Min Workers
	Baseline capacity
	Set based on steady-state load

	Max Workers
	Peak capacity
	Set based on peak load + buffer

10.3 I/O Optimization
Enable auto-optimization in cluster configuration
spark_conf = {
 "spark.databricks.delta.optimizeWrite.enabled": "true",
 "spark.databricks.delta.autoCompact.enabled": "true"
}

Or set table properties
@dlt.table(
 name="optimized_table",
 table_properties={
 "pipelines.autoOptimize.managed": "true",
 "pipelines.autoOptimize.zOrderCols": "customer_id,order_date"
 }
)
def optimized_table():
 return dlt.read_stream("source")
11. Security and Governance
11.1 Unity Catalog Integration
DLT integrates with Unity Catalog for comprehensive governance:
Access Control: Table-level permissions
Lineage Tracking: Automatic column-level lineage
Audit Logging: Complete audit trail
Data Discovery: Searchable catalog
11.2 Secret Management
Access secrets securely within DLT pipelines:
@dlt.table(name="external_data")
def external_data():
 """
 Access external system using securely stored credentials.
 Secrets are never exposed in logs or UI.
 """
 api_key = dbutils.secrets.get(scope="production", key="api-key")

 return (
 spark.read
 .format("jdbc")
 .option("url", "jdbc:postgresql://host/db")
 .option("password", dbutils.secrets.get(scope="production", key="db-password"))
 .option("dbtable", "source_table")
 .load()
)
12. Migration Guide
12.1 From Traditional Spark Jobs to DLT
Migrating existing Spark ETL jobs to DLT involves restructuring code from imperative to declarative style:
Before: Traditional Spark Job
def run_etl():
 # Read
 raw_df = spark.read.json("/landing/data/")

 # Transform
 clean_df = raw_df.filter(F.col("id").isNotNull())
 enriched_df = clean_df.withColumn("processed_at", F.current_timestamp())

 # Write
 enriched_df.write.format("delta").mode("overwrite").save("/silver/data/")
After: DLT Pipeline
@dlt.table(name="bronze_data")
def bronze_data():
 """
 DLT handles checkpointing and incremental processing automatically.
 No need for manual state management.
 """
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .load("/landing/data/")
)

@dlt.table(name="silver_data")
@dlt.expect_or_drop("valid_id", "id IS NOT NULL")
def silver_data():
 """
 Expectations replace manual filter logic.
 Validation metrics are automatically captured.
 """
 return (
 dlt.read_stream("bronze_data")
 .withColumn("processed_at", F.current_timestamp())
)
12.2 Migration Checklist
[] Identify source data and formats
[] Map existing transformations to DLT tables/views
[] Convert validation logic to expectations
[] Replace manual scheduling with DLT triggers
[] Update downstream consumers to new table locations
[] Set up monitoring and alerting
[] Validate data parity with existing pipeline
13. Troubleshooting
13.1 Common Issues and Solutions
	Issue
	Symptom
	Solution

	Schema mismatch
	Pipeline fails on read
	Enable schema evolution or fix source

	Out of memory
	Executor OOM errors
	Increase cluster size or optimize joins

	Slow processing
	High latency
	Enable Photon, optimize transformations

	Checkpoint corruption
	Pipeline won't start
	Reset checkpoint or full refresh

	Expectation failures
	High drop rates
	Review source data quality

13.2 Debugging Techniques
Add debugging output (visible in driver logs)
@dlt.table(name="debug_table")
def debug_table():
 df = dlt.read_stream("source")

 # Log record counts for debugging
 print(f"Processing batch with schema: {df.schema}")

 return df
14. Best Practices
14.1 Development Checklist
[] Use streaming tables for append-only data, materialized views for aggregations
[] Define expectations at silver layer for data quality
[] Use quarantine tables to capture bad records
[] Parameterize paths and configurations
[] Enable Photon for performance
[] Set up monitoring alerts on pipeline failures
[] Test transformations independently of DLT
[] Document tables with comments
14.2 Naming Conventions
	Object
	Convention
	Example

	Pipeline
	`{env}_{domain}_pipeline`
	`prod_sales_pipeline`

	Bronze Table
	`bronze_{source}_{entity}`
	`bronze_crm_customers`

	Silver Table
	`silver_{entity}`
	`silver_customers`

	Gold Table
	`gold_{metric/aggregate}`
	`gold_daily_sales`

	View
	`v_{description}`
	`v_filtered_events`

14.3 Error Handling
@dlt.table(name="robust_processing")
def robust_processing():
 """
 Robust processing with graceful error handling.

 Handles common data issues:
 - Invalid numeric formats
 - Multiple date formats
 - Flags problematic records for review
 """
 df = dlt.read_stream("bronze_data")

 # Handle parsing errors gracefully
 df = df.withColumn(
 "amount_parsed",
 F.when(
 F.col("amount").rlike("^[0-9]+(\\.[0-9]+)?$"),
 F.col("amount").cast("decimal(18,2)")
).otherwise(F.lit(None))
)

 # Handle multiple date formats
 df = df.withColumn(
 "date_parsed",
 F.coalesce(
 F.to_date("date_str", "yyyy-MM-dd"),
 F.to_date("date_str", "MM/dd/yyyy"),
 F.to_date("date_str", "dd-MM-yyyy")
)
)

 # Flag records with issues for review
 df = df.withColumn(
 "_has_parsing_issues",
 F.col("amount_parsed").isNull() | F.col("date_parsed").isNull()
)

 return df
Document Control
	Field
	Value

	Version
	2.0

	Created
	2025-01-24

	Last Review
	2025-01-29

	Next Review
	2025-04-29

	Approved By
	Data Engineering Lead

image1.png
#MAST=CH
DIGITAL

